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THE METHOD OF LYAPUNOV FUNCTIONS IN PROBLEMS OF MULTISTABILITY OF MOTION* 

A.B. AMINOV and T.K. SIRAZETDINOV 

The multistability of motion is defined as the property whereby different 
groups of variables describing the motion have different types of 
stability, e.g., one group has stability in the small, another has 
asymptotic stability, and another has boundedness etc. The method of 
Lyapunov functions is used to prove theorems on multistability which are 
then used to study the stability of motion of winged aircraft with 
respect to groups of variables. In existing definitions and studies of 
stability it is usually assumed that the phase coordinates have the same 
type of stability, e.g., asymptotic or uniform, etc. In practice, how- 
ever, say when synthesizing aircraft trajectories, we need to take 
account of different requirements imposed on the behaviour of different 
groups of phase coordinates. For instance, when considering the space 
manoeuvres of an aircraft with constant load factor, it is important to 
obtain asymptotic stability with respect to the angles of attack and 
sideslip, while only uniform stability with respect to the angles of 
pitch, yaw, and rotation is needed. The angles of pitch, yaw, and 
rotation can themselves have any values, i.e., their stable behaviour 
is not required. In short, the individual coordinates or groups of 
coordinates of the same system can have different types of stability, say 
asymptotic or uniform. We then speak of the multistable motion of the 
system. It is a further development of the idea of partial stability 
/l/, the theory of which has been taken further by Rumyantsev /2/ and 
his associates, and by others /3/. 

1. Consider the equation of perturbed motion 

dxldt = X (t, x), X (t, 0) = 0, t > 0 

x = (II, 82, . . ., In) E R”, t E R’ 

Corresponding to the unperturbed motion we have x = x(t)=O. 
We divide the phase coordinates xl,xL,...,x, into N groups: 

x(') = (Xl, r,, . . ., In,), da) = @n,+*, .Gl,+zr . . ., x,,,+,,), . . . 

. . .( x(j)=(%1j_~+l9 G~j_~+zv . . .7 “mj,+nj ) 7 . . .* X(N) = 

j=i,Z,...,N 

We introduce the notation and norms 

x!j'=Si, i=mj_l+l, mj-1 + 2, . . ., ITlj-1 + nj; m, s 0 

x=(xp,xp, . . ., xp, (8 (9 (3) (N) I %+11 . * .1 xn,+nl3 ~*,+*,+1r . . -9 x,1 ) 

(II x(j) 11”; 1) &+I) IIs + . . . + 11 x(k) ((‘J)‘$ j < k 

I/ x II = iii1 x4’/ = tjiI lb(j) IIPP 9 i=i,2,...,N 

(1.1) 

(i.2) 

(1.3) 

Similar notation and norms are introduced for the components of the vector X (1.1), i.e., 
for X(j), X(jvk), f < k, j = 1, 2, . . ., N. 

Let x = x(t; t,,x,) be the solution of system (1.1) with the initial data t,, x0 = x(t,; t,, x0). 
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We shall consider the multistability of the solution .r - 0 with respect to allvariables 
x(l), xc*), .( x(S) or with respect to some of the variables x(l), x@), . . ., x(~-), where lV, < X. 
We therefore assume that the right-hand sides of (1.1) are continuous functions in the domain 

G('*'== {t, x: 11 xc'* ,'.) 1) <-:H>O, 0.G [/ &“A+:. .W /I < o, t E [O, 00)) (I.<) 

and that they satisfy the conditions for the solution x = x(t; t,,x,) to be unique, which is 

defined for all t>O with /) x(~,~+)II < H, i.e., we have ~(l,~~*) continuability of the solution 
/3/. If we consider the multistability of the solution x ~0 with respect to all variables 
0, x(2), . ., x(.V), we put N, = N and our assumptions hold in the domain G(v). 

Definition 1. We call the solution x=0 of system (1.1) multistable when 
1) it is x(l)-stable, i.e., if, for any e >O, 1, > 0, no matter how small E is, there 

exists 6 (E, to) > 0 such that 11 x0 II < 6 implies )I xc') (t; t,, z,,)l) < e, Vt > t,; 
2) it is x(*)-stable uniformly with respect to to, i.e., if it is x(*)-stable and for 

any s>O we can choose 6 (EL independent of to; 
3) it is asymptotically x(')-stable, i.e., if it is xc')-stable and for any t, > 0 

there exists A (to)>0 such that the solution x (t; t,, x@) with initial value II xo II < A 
satisfies the condition 

li!n I( da) (t; t,, x0) I/ = 0 
t-l, 

4) is asymptotically x@)-stable uniformly with respect to {t,,x,}, i.e., if it is 
x@)-stable uniformly with respect to t,and there exists a number A0 >O, independent of t,, 
such that the condition 

piI )I x(4) (t; t,, x0) 11 = 0 

holds uniformly with respect to {to, x0) of the domain G" = {t,,x,: ta>O, (1 x,1/< A,}, i.e., 
for any E > 0 there exists T (E) such that t, > 0, II x011 < A0 imply 11 x@)(t; t,,,x,)II < e for 
all t > to + T; 

5) every j-th group of variables (i = 1,2, . . . . N) has a definite type of stability, 
where n, f n, + . . . + no* = n, N, = N. 

With n, + n2 + . . . + nN*< n, i.e., N,< N the behaviour of the group of variables 
with subscripts nN*+l? nN*+% . . ., nN is not controlled and we arrive at the concept of multi- 
stability with respect to some of the variables x(l),x@), . . .,x(N*). 

We consider the real functions v U, x) which are defined and continuous in the domain 
G(N*), have continuous partial derivatives N/at, w/as, (i = 1, 2, . . ., n) at all points of this 
domain, and satisfy the condition V(t,O)zO. 

Definition 2 /l/. The function W(xlvN*), not explicitly dependent on time t,iscalled 
positive definite with respect to the variables x(~.~V*) if it is non-negative in the domain 
II x(lsN*) II -( H and vanishes if and only if x(1,x*) = 0. 

Definition 3 /2/. The function V(t,x) is called x('*~*) positive definite if there 
exists a positive definite function W (x(l.N*)), not explicitly dependent on t, such that, in 
the domain G(N*) given by (l-4), we have 

V (t, x) _> W (x(l+N*)) (1.5) 

Lemma 1. The necessary and sufficient condition for V (t, x) to be x(lJ*) positive 
definite is thatit can be written as the sum of a non-negative function V+(t,x) with respect 
to all variables zl,r,, . . ..x. and a function W (x(lsN*)) , not explicitly dependent on t, which 
is positive definite with respect to the variables C&N*), i.e. , 

v (t, x) = v (t, x) + w (x(1.21*)) (1.6) + 
Proof. Necessity. Let V (t, xl be x(lSN*) positive definite. Then, by Definition 3, 

there is a positive definite function W(Y("~*)), such that, in the domain @*) of (1.4), 
condition (1.5) holds. 

We introduce the function 
v, (t, x) = V (t. x) - w (x(l.N*)) (1.7) 

which, by condition (1.5), is ,non-negative. From (1.7) we obtain expression (1.6) for V(t,x). 

Sufficiency. Let Eq.(1.6) hold, where v+(t,x)),o, and w (&.N*J) is positive definite 

with respect to the variable xC1lN*). Then it follows from (1.6) that V(t,r)- W(X(**~*)) = V+(t, 
x) > 0. Hence condition (1.5) hold for V (t, x), i.e., V (t. x) is Y&~*) positive definite. 
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Lemma 2 /3/. The function V(t,x) is xc."*) positive definite if and only if there is 
a continuous function f(r),monotonically increasing with respect to r E IO, HI C H', f (0) = 0, 
such that, in the domain G(N*)' of (1.4), 

I' (6 x) > f (I) x(‘,N*) 11 ) (1.8) 

Definition 4 /3/. The function V(t; x) admits of an infinitely small upper limit with 
respect to x(LN*) if, given any a>O, there is 6 (E) > 0 such that t > 0, )I x(rvN*)jI < 6, 0 < 

)I xCN*+*sN)II < 00 implies j V (t, x) I < e. 

Definition 5 /4/. The function V(t, x) , defined in the domain 
G = {t, x: 0 <II x/I < 00, t E lo, .x)} (1.9) 

admits of an infinitely large lower limit with'respect to x(',~*) in G, if, in the domain G 
of (1.9), we have condition (1.5) and 

W (xQzN*)) + m as )I x(lsN*) 11 + 00 (1.10) 

2. Let us prove some theorems on the multistability of motion. To be specific, we 
will divide the variables ~1~x2, . . ..x., into four groups, i.e., we take N = 4 and consider 
the multistability of the solution x = xc’+) = 0 with respect to some of the variables I('*~).. 

Definition 6. We call the solution x = XC'+)=0 of system (1.1) x@?) -stable uniformly 
with respect to t,, asymptotically x(a~s)-stable, or xcS)-stable in the large, if: 

for any E>O, t,,>O, there is a number 6 = 6 (E) > 0 such that11 x(V) )I < 6 (0 .< (1 x(Q)) < 

00) implies 
11 XC'?') (t; &I, x0) 1) < a, Vt > t, 

for any t,>O there exists A (to)>0 such that the solution x(t; t,,x,) with II XII II 
<A has the property 

fi: I( x@J) (t; t,, x0) (( = 0 (2.1)' 

where jlxll< A is the estimate of the domain of ~('1') -attraction of the point x = 0 for 
the initial instant t,; 

given wLg there exists p = P (p,,)> 0 such that, for any {x0, to) satisfying the in- 
equality 11 x011 < pLo, Vt>O, we have 

II I@) tt; Ll, x0) II < I(, vt > t, 

Theorem 2. For ~('~~)-stability, uniform with respect to to, x@13)-asymptotic stability, 

or xc3)-stability in the large of the solution x = x%*) ~0 of system (l.l), it is sufficient 
that there exists in the domain G(') of (1.4) a positive definite function V (t, x) which, 
with respect to x(',%i admits of an infinitely small upper limit and whose total time de- 
rivative, taken with the opposite sign, i.e., -_dV/& , is an xc*.@-positive definite 
function, and we have the conditions 

,,T<[ v 6 4 < inf V(t,x), Vt>t, (2.2) 
Ilx(3)ll=P 

II X(*,3) II < M > 0, M E R' (2.3) 

Proof. Since - dVldt is an x(~~‘) -positive definite function, we have by Lemma 1: 

--dv/at = w, (t, x) + w, (x(393)) (2.4) 

where *r (t, x)>O, Wz(x@f3)) is a positive definite function. 
By (2.4) we have dVldt,<O, i.e., Theorem 1 embraces the conditions of the theorem on 

to-uniform stability with respecttosome of the variables /3/. Hence the solution x=0 of 
system (1.1) is stable uniformly with respect to t,. Hence it follows that, given any e>O, 
t, 2 0 there exists 6 (E) such that 11 x,, II < 6 implies 11 x%3) (t; to, x0)1] ( e for t > t,. 

Let us prove property (2.1). 
6 (6 > O), 

Assume the contrary: let there be a point x* with 11 x*11< 
a number 1> 0), and a sequence tk+W,tk-tk-l>a>o, k=l,2,..., such that 

)I x@*') (tk; t,, a,) 11 > 1. By (2.3), we can /5/ choose p,O</3 <a/2, for which 

l/2 Q '! ~@*~)(t; t,, x*) 11 <e, Vt E [tk - fi, tk + p], k = 1, 2, . . . (2.5) 

By Lemma 2, for the x@v')-positive definite function (-dV/dt) we have 

dV/dt < - f (11 x(‘,‘)(l ), 

where the function f(r) is continuousandmonotonically increasing with respect to rE[O,H]. 
On integrating this inequality between the limits t, = t,- p and t = th. + p and using (2.5), 
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we obtain 

0 < v (fh_ + p. x (II, J- p: t,, x*) < v (t”: x*) - t f ( 11 x(2,3) /I ) 02 < \ i 
1. t,+p 

v (to, x*) - r, j 
4-7 ti-pl 

f ( II zG3) II ) dt g v (to? xc) - 2Mf (3) . 

The condition v Uk + B? r (& +j3; t,, x,))>O is violated for sufficiently large k. Hence 
the assumption that I>0 is impossible, i.e., 2 = 0 and condition (2.1) holds. The 
x(V)-asymptotic stability of the solution x= 0 of system (1.1) is thus proved. 

To prove the stability of the solution x= 0 in the large with respect to the group of 
variables x(8) , we have to show that, under the conditions of the theorem, the norm/l x(')(t; &J, 
x0) II does not reach a value equal to fi if at the initial instant t = t, we have IIx,,Ij < &. 

Let II x0 II < PII. In the domain rP = {x, t: II xo)(l< p, t> t,}we have dV/dt<O. Then, 

(2.6) 

Let us show that, under condition (2.2), 

II x@) (t; tJ, XJ II < p, Vt > t, (2.7) 

If this is not the case, i.e., the left-hand side of (2.7) is equal to p at some instant 
t = t, > to, then 

V(t,, x)2 inf V((t,, x) (2.8) 
Ilx@)ll=F 

using (2.6) and (2.8), we have 

which contradicts condition (2.2) of the theorem. This contradiction proves the stability in 
the large. 

Thus, all the properties of multistability of the solution, and hence Theorem 1, are 
proved. 

In the next theorem we take N = 3 and assume that the conditions on the right-hand 
sides of system (1.1) hold in the domain G of (1.9). 

Definition 7. The' solution x = x(1.3) E 0 of system (1.1) is called xc'3'B)-stableuniformly 
with respect to t,, or asymptotically x(*)-stable in the large, if: 

for any s>O, to>0 there exists 6 = S (e)>O such that II ~('8~) 11 < 6 (0 < II xc) II < a) 
implies 

II x(',*)(t; to, x0) II <s, Vt > t, 

for any to>0 and X,E R" the solution x (t; t,, x,) has the property 

il x(l) (C t,, x0) /I = 0 (2.9) 

Here, the domain of x(*)-attraction of the point .x = 0 is the entire space. 

Theorem 2. For x(1~2)-stabil$tv, uniform with respect to t,, or asymptotic x@) stability 
in the large, of the solution x = x(1.8)= 0 of system (1.11, it suffices that there exist in 
the domain G of (1.9) an xc*')-positive definite function V(t,x), admitting of an infinitesi- 
mal upper limit with respect to x('*'), or an infinitely large lower limit with respect to 
x(2), whose total time derivative, taken with the opposite sign, i.e., --dVtdt, is an $4) - 

positive definite function, and that we have the condition 

II xc) II < M > 0, M E R’ (2.10) 

Proof. Under the conditions of Theorem 2, the conditions of Theorem 1 hold. BY theorem 
1, we have til.*) -stability, uniform with respect to t,,andasymptotic xc*) -stability, of the 
solution x(lfs)= 0. 

Let us show that condition (2.9) holds for any r,ER". Since v(t, x), in the domain G 
of (1.91, admits of an infinitesimal upper limit with respect to x('-~) and an infinitely 
large lower limit with respect to Y&), then, by Definition 4 and 5. in the domain G of (1.9) 
we have 
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w (x(2’) Q v (t, x) < w, (X(1,2)) (2.11) 

where w (x'"'), W, (~(‘.a)) are positive definite functions and W (xc*))+ 00 , 11 x@) 11 ---t 00. 

On repeating the proof of asymptotic stability given in Theorem 1, and using conditions 
(2.10) and (2.11), we conclude that property (2.9) holds for any x0 E R”, Vt, > 0. The theorem 
is proved. 

Corollary. Taking N, = N in Theorems 1 and 2, we obtain corresponding theorems on 
the multistability of the motion with respect to all the variables. Here, in Theorem 1, N, = 
N=3, and in Theorem 2,N*=N=2. 

3. We will use the result obtained to study the stability of the space motion of winged 
aircraft. We will consider the case when the aircraft, moving with fixed absolute value of 
the velocity, performs a manoeuvre with constant load factor. Thus, to the undisturbed motion 
there correspond constant values of the angles of attack a, and of side-slip b,,,and angular 
velocitiesofpitch~&o, yaw'o,,, androtationw,,. Theirdeviations fromtheperturbedvalueswillbe 
calledu,p, mz, my. 0, respectively. Thedeviationsoftheangularvelocities of side-slip, yaw,and 
rotationmust not exceed given limits. 

We consider the equations of the perturbed motion in the form /6/ 

a'=pw, - l/,cyna - u/30, - l/,e>& 

0,' = mzaa + m>o, - p Ao,co, + rn>& 

8’ = PO” + ‘/aQB + pa% + 1/,c4p& 

(3.1) 

where p is the aircraft relative density, C$ are the coefficients of the aerodynamic forces, 

mi are the coefficients of the aerodynamic moments, 6,, 6,, 6, are the deviationsof the 
elevator, aileron, and rudder, and J,,J,,J, are the aircraft moments of inertia with respect 
to the connected coordinate system. 

We take the law of stabilization in the form 

6, = keaa + ke*uz, 6, = k,flfi + krYuy, 6, = k,fi$ + ko%, 

We substitute the values (3.2) into Eqs.(3.1). We use the notation 

x1=%, x*=wu, 53=wz, xp==a, x5=8 

al, = rn$ + k,,fim>, aI5 = rn> + k,xm>, alg3 = - pC 

a** = myfl + k,flm>, az5 = rnp + krYmF, az13 = PR 

az3 r= mra + kaam>, as4 = rn> + k,‘m>, aSll = - pA 

aa = I/~ (cv” i keac>), 
b 

aa = v - %kezcye, %15 = - P 

aj, =p/2 ,(c,R + krflC?)t ab8 = p + ‘I k Ycbr .2r .zt aSI = P 

Using this notation, we can write system (3.1) as 

5 i' = allxl + a15r5 + alz3xzx3 

52' = alzxa + a2555 + a2++z3 

23. = %X3 + =34=4 + %lZ+Q 
X 4' = kx3 + ad4xp + a415x1x5 

55 = adk + a55x5 + a511x1xp 

(3.2) 

(3.3) 

(3.4) 

We shall find the conditions connecting the coefficients of system (3.4) under which the 
solution of the system x = 0 is asymptotically stable with respect to xl, 55, and stable with 
respect to 21, X,, 50. 

We use the corollary to Theorem 2. In our example, N = 2, i.e., there are two groups 
of variables {Xl, 52, SS}, {x4, x5}. In accordance with the notation (1.3), for system (3.4) we 
have 
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We consider the Lyapunov function 

V = ‘1, (-u210u312x12 + 2a,,+,,,x, - a123a21Rxi2 + xL.42 + ~2) (3.3) 

which is positive definite and admits ofaninfinitesimal upper limit and an infinitely large 
lower limit with respect to the variable xc,'). 

In view of system (3.4) the derivative of the function (3.5) is 

(3.6) 

By the corollary to Theorem 2, to solve our problem we have to find the conditions where- 
by function (3.6) Is non-positive with respect to x1,x2,1, and negative definite with respect 
to x4, xg. 

The method of finding these conditions is given in /7/ and is as follows. We equate the 
derivative dvldt of (3.6) to the function 

W(x) = --(c11z1 + c1s%)z - (c&z + %r# - (3.7) 
jC&3 + c315X - (c&Q - (c&J2 

and, comparing coefficients of like terms of (3.6) and (3.7), we find the conditions for the 
existence of the coefficients of function (3.7) which are in fact the required conditions for 
the function (3.6) to be non-positive with respect to x1, x2,xa and negative definite with 
respect to %1 x5. These conditions are 

(3.8) 

On substituting the values of the coefficients (3.3) into inequality (3.8), we obtain 
the sufficient conditions which solve the aircraft space manoeuvre problem. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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