PMM U.S.S.R.,Vo0l,51,No.5,pp.553-558,1987 0021-8928/87 $10.00+0.00
Printed in Great Britain © 1989 Pergamon Press plc

THE METHOD OF LYAPUNOV FUNCTIONS IN PROBLEMS OF MULTISTABILITY OF MOTION"

A.B. AMINOV and T.K. SIRAZETDINOV

The multistability of motion is defined as the property whereby different
groups of variables describing the motion have different types of
stability, e.g., one group has stability in the small, another has
asymptotic stability, and another has boundedness etc. The method of
Lyapunov functions is used to prove theorems on multistability which are
then used to study the stability of motion of winged aircraft with
respect to groups of variables. In existing definitions and studies of
stability it is usually assumed that the phase coordinates have the same
type of stability, e.g., asymptotic or uniform, etc. In practice, how-
ever, say when synthesizing aircraft trajectories, we need to take
account of different requirements imposed on the behaviour of different
groups of phase coordinates. For instance, when considering the space
manoeuvres of an aircraft with constant load factor, it is important to
obtain asymptotic stability with respect to the angles of attack and
sideslip, while only uniform stability with respect to the angles of
pitch, yaw, and rotation is needed. The angles of pitch, yaw, and
rotation can themselves have any values, i.e., their stable behaviour
is not required. In short, the individual coordinates or groups of
coordinates of the same system can have different types of stability, say
asymptotic or uniform. We then speak of the multistable motion of the
system. It is a further development of the idea of partial stability
/1/, the theory of which has been taken further by Rumyantsev /2/ and
his associates, and by others /3/.

1. consider the equation of perturbed motion

dx/dt = X (t,x), X(£,0)=0, t>0 (1.1)
X= (2, %, .. 2,) =R", t= R

Corresponding to the unperturbed motion we have X = x (¢) = 0.

We divide the phase coordinates z;,%,, ..., 2, into N groups:
XV = (11- Zgy o ooy In‘), X® = (1n.+1! Tngt2y « « os I/),#—VI:)» P (12)
c XD = (a:,,,]._lﬂ, Tomjs2r v e I'"j—l“‘;)’ XM=
im1 N
(Tmpy_g+1s Tmpy_gar - = Zn) M= kzi Ry, n= kE Ny
=1 =1
i=1,2,..,N
We introduce the notation and norms
=z, i=mjan, mi,+2,...,mi+n; my=0 (1.3)
1 . v : 2 N
X = (xi )’ xﬂ(x ), “eus 1'5;,)1 xfl?ﬂv cee Isl,)ﬂw xg?ﬂlz-)-h c ey x(u ))
n
J
. 1 :
1x0 = (3 #hy )™ Ix00 =

(5D [+ XD Oy, <k

N
Pxb=(Z )" =(Z Wop)*, j=12...8

i=1

Similar notation and norms are introduced for the components of the vector X (1.1), i.e.,
for X®,X0w® j<k, j=1,2,..., N
Let X = x (t; ), X,) be the solution of system (1.l) with the initial data fo, X, = X (fy; t5, Xg).
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We shall consider the multistability of the solution x =0 with respect to all variables

xM, x®, .., x(™) or with respect to some of the variables x®, x®, ... x(Vs where N, < V.
We therefore assume that the right-hand sides of (l.1) are continuous functions in the domain
GO = (1 x| X V| S H >0, 0K | xVott D | < 0,1 [0, 00) a5

and that they satisfy the conditions for the solution x = x (f; f;, X,) to be unique, which is

defined for all ¢t >0 with || xN¥o || H, i.e., we have xW. N+ continuability of the solution
/3/. 1If we consider the multistability of the solution x =0 with respect to all variables
x® x® ... xN), we put N, =N and our assumptions hold in the domain G™,

Definition 1., We call the solution =0 of system (1.1) multistable when

1) it is xW-stable, i.e., if, for any & >0, f, >> 0, no matter how small ¢ is, there
exists 8 (e, ¢) >0 such that | xq||<<8 implies ||x™ (t; ty, zo) |l < e, Vi > t,;

2) it is x®-stable uniformly with respect to ¢, i.e., if it is Xx® -stable and for
any & >0 we can choose § (¢), independent of f,;

3) it is asymptotically x®-stable, i.e., if it is x®-stable and for any ¢, >0
there exists A () >0 such that the solution x (f; ¢, X,) with initial value | x,]|<<A
satisfies the condition

lit [ x® (5 £y, Xo) [ =0
t-x

4) is asymptotically x®-stable uniformly with respect to {f,, X,}, i.e., if it is
x#®-stable uniformly with respect to {, and there exists a number Ay, >> 0, independent of i,
such that the condition

lim | x@ (8; 29, %p) | == 0
oo
holds uniformly with respect to {fu Xo} of the domain G° = {t;, Xo: L, >0, [|X,[l < Ag}, i.e.,

for any & >0 there exists T (e) such that ¢, >0, || x,||<<A, imply [Ix® (% ¢, x)||<<e for
all t >ty + T,

5) every j-th group of variables (j=1,2,..., N) has a definite type of stability,
where n; +ny 4+ ...+ ny,=n, N, = N.

With n, +n,+ ...+ ny,<<n, i.e., N, <N the behaviour of the group of variables
with subscripts nygi BNy - - - BN is not controlled and we arrive at the concept of multi-
stability with respect to some of the variables x®, x®, . .. x(V¥,

We consider the real functions V (¢, x) which are defined and continuous in the domain
GWN®,  have continuous partial derivatives 4V/dt, aV/dx; (i = 1,2,...,n) at all points of this

domain, and satisfy the condition V (¢, 0) = 0.

Definition 2 /1/. The function W (x1.¥¥), not explicitly dependent on time t, iscalled
positive definite with respect to the variables x1 ™o if it is non-negative in the domain
|| xt.¥%) || < H and vanishes if and only if x.F# = 0,

Definition 3 /2/. The function V (t,x) is called xU¥¥ positive definite if there
exists a positive definite function W (x.N¥) not explicitly dependent on t, such that, in
the domain - G¥¥ given by (1.4), we have

V(t, x) = W (x1.¥%) (1.5)

Lemma 1. The necessary and sufficient condition for V (f, x) to be x@¥¥ positive
definite is that it can be written as the sum of a non-negative function V,(f, X) with respect

to all variables z;, 7, ..., ¥, and a function W (x:M#¥)}, not explicitly dependent on t, which
is positive definite with respect to the variables (LN, i.e.,
V(t,x) =V, (t x) + W (x®¥) (1.6)

Proof. Necessity. Let V(t,x) be x"¥¥ positive definite. Then, by Definition 3,

there is a positive definite function W (x™) such that, in the domain 6™ of (1.4),
condition (1.5) holds.
We introduce the function
Vo (t,x) = V(& x) — W (xb Ny 1.7)

which, by condition (1.5), is non-negative. From (1.7) we obtain expression (1.6) for V (,x).

Sufficiency. Let Eq.(1.6) hold, where V,(:,x)>0, and w(xtN*)  is positive definite

with respect to the variable xU¥#®, Then it follows from (1.6) that V(,x) — W (x®M) — v, ¢,
x)> 0. Hence condition (1.5) hold for V(,x), i.e., V(,x) is x®¥) positive definite.



555

Lemma 2 /3/. The function V (£, x) is x(¥». positive definite if and only if there is
a continuous function f (r), monotonically increasing with respect to r &[0, HIC R, f(0) =0,
such that, in the domain GW+ of (1.4),
Vit x) = f (|| x@N0 || ) (1.8)

Definition 4 /3/. The function V (t; x) admits of an infinitely small upper limit with
respect to xMM) if, given any &£ >0, there is 6(e) >0 such that t>>0,| x®¥9| <6, 0 <<

| XN+t M) || << 00 implies | V (¢, x) | << e.
Definition 5 /4/. The function V (f,X), defined in the domain
G={t,x 0| x[|<oo, tI0, 0)) (1.9)

admits of an infinitely large lower limit with’respect to x®¥® in G, if, in the domain G
of (1.9), we have condition (1.5) and
W (x(1:N4)) > 0o as || XLNR || - oo (1.10)

2. 1lLet us prove some theorems on the multistability of motion. To be specific, we
will divide the variables I, %5, ..., %, into four groups, i.e., we take N = 4 and consider
the multistability of the solution x = x3% =0 with respect to some of the variables z(:3)

Definition 6. We call the solution x = x%" =0 of system (1.1) x% -stable uniformly
with respect to ¢, asymptotically =x®® -stable, or «x®-stable in the large, if:
for any &>0,{, >0, there is a number § =0 (g) >0 such that| x| <8 (0 < ||xW}|<
o0) implies
| x93 (8 t, ) || << &, Vit

for any {,>>0 there exists A ({) >0 such that the solution x (f; &y, X,) with | Xl
< A has the property

Lim || X9 (t; £ %) | =0 @1y

where | x||<< A is the estimate of the domain of x®3 -attraction of the point x =0 for
the initial instant f;

given u, there exists p = p(uy) >0 such that, for any {x, t,} satisfying the in-
equality || xq(] << Mo VE>0, we have

[ x® (8 to, xo) | < by VE >,

Theorem 1. For x0% -stability, uniform with respect to ty X® ¥ _agymptotic stability,
or x® -stability in the large of the solution X = x®#® =0 of system (1.1), it is sufficient
that there exists in the domain G® of (1.4) a positive definite function V (¢, Xx) which,
with respect to x®*?¥, admits of an infinitely small upper limit and whose total time de-

rivative, taken with the opposite sign, i.e., —dV/dt , is an x®%-positive definite
function, and we have the conditions

sup V(,x)< inf V(,x), Vt>1t, (2.2)
<k Ix®=p
X&) M>0, MR (2.3)

Proof. Since — dV/dt is an 'x*® -positive definite function, we have by Lemma 1:
—aVidt = W, (¢, X) + W, (x®9) (2.4)

where W, (t,x) >0, W, (x@%) is a positive definite function.

By (2.4) we have dV/dt<{0, 4i.e., Theorem 1 embraces the conditions of the theorem on
ty-uniform stability with respect to'some of the variables /3/. Hence the solution x =0 of
system (1.1) is stable uniformly with respect to {,. Hence it follows that, given any & >0,
t, > 0 there exists § (2) such that || %]l <8 implies [ x®3 (¢ ¢, x,)||<<e for t>>t,.

Let us prove property (2.1). Assume the contrary: let there be a point X, with [ x,[l<

§@>0), anumber 1>0), and a sequence Ilx— o0, Iy — 1 >a2 >0, k=1,2,..., such that
I x®3) (&; to, 24) || > 1. By (2.3), we can /5/ choose f,0<<P << a/2, for which
2 XD (05 g x) [ <o, VE [y — Bty +Bl, B=1,2... (2.5)

By Lemma 2, for the X®¥-positive definite function (—dV/dt) we have

avide << — 1 (|| x| ),

where the function f(r) is continuous and monotonically increasing with respect to r = [0, HI.
On integrating this inequality between the limits {, =t —f and t =1t + B and using (2.5),
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we obtain

t
OVt + B (b + i Lo %) TV (1) — § 7 (29 )y de <
£,
s
Vitox) = 3§ 1109y ae <Vt x,) — 2087 ().

i=U 4D

The condition V (tx + B, x (tx + B; #,, x,)) > 0 is violated for sufficiently large k. Hence
the assumption that >0 1is impossible, i.e., I = and condition (2.1) holds. The
x®3) ~agsymptotic stability of the solution x=0 of system (1.1) is thus proved.

To prove the stability of the solution X =0 in the large with respect to the group of
variables x®, we have to show that, under the conditions of the theorem, the norm /| x®) (85 2,
z,)|| does not reach a value equal to fi if at the initial instant ¢ =1, we have [ x| << p,.

Let || X,|l << o In the domain T, = {x,#: || x®| < p, t >t} we have dV/dt< 0. Then,

Vi, x) <<V (6, %) <C sup V (t, x) (2.6)
Iixtt<pe

Let us show that, under condition (2.2),
Hx® (8t x| <p, Vit (2.7)

If this is not the case, i.e., the left-hand side of (2.7) is equal to p at some instant
t=1t, > %, then
V(e x)> inf V(t,,x) (2.8)
Ix@=p

Using (2.6) and (2.8), we have

sup V{ty, x) = V(tex) = inf V{4, x)
I<ha &)=y

which contradicts condition (2.2) of the theorem. This contradiction proves the stability in
the large.

Thus, all the properties of multistability of the solution, and hence Theorem 1, are
proved.

In the next theorem we take /N =3 and assume that the conditions on the right-hand
sides of system (1.1) hold in the domain G of (1.9).

Definition 7. The solution x = x:% = (0 of system (l.1l) is called x*? -stableuniformly
with respect to {, or asymptotically x®)-stable in the large, if:
for any e>>0,t, >0 there exists & =8() >0 such that [|x®V)<<8 (0| x®) || << o00)

implies .
Ix0B (@ g, x) [ <&, Vi,

for any %, >0 and X, R" the solution X (% f,, ¥%J) has the property

I X (85 0, %) | =0 2.9)

Here, the domain of x® -attraction of the point x = 0 is the entire space.

Theorem 2. For x(2-stabilitv, uniform with respect to t,, or asymptotic x® stability
in the large, of the solution x = x%3 =0 of system (1.1), it suffices that there exist in
the domain G of (1.9) an x@:M-positive definite function V (¢, X), admitting of an infinitesi-
mal upper 1limit with respect to x®%, or an infinitely large lower limit with respect to

x®), whose total time derivative, taken with the opposite sign, i.e., —dV/dt, is an x® —
positive definite function, and that we have the condition

X< M>0, M= R (210

Proof. Under the conditions of Theorem 2, the conditions of Theorem 1 hold. By theorem
1, we have x*® -stability, uniform with respect to ¢;, and asymptotic x® -gtability, of the
solution x®.3= 0.

Let us show that condition (2.9) holds for any X, & R". since V (¢, x), in the domain G
of (1.9), admits of an infinitesimal upper limit with respect to x"?’ and an infinitely
large lower limit with respect to x®), then, by Definition 4 and 5. in the domain G of (1.9)
we have
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W (x®) < V (¢, x) < W, (x@:) (2.11)

where W (x®), W, (x@.?)) are positive definite functions and W (x®)— oo , (| x® || — oo.

On repeating the proof of asymptotic stability given in Theorem 1, and using conditions
(2.10) and (2.11), we conclude that property (2.9) holds for any X, < R", Vi, > 0. The theorem
is proved.

Corollary. Taking N, = N in Theorems 1 and 2, we obtain corresponding theorems on
the multistability of the motion with respect to all the variables. Here, in Theorem 1, Ny =
N = 3, and in Theorem 2, N, = N = 2.

3. We will use the result obtained to study the stability of the space motion of winged
aircraft. We will consider the case when the aircraft, moving with fixed absolute value of
the velocity, performs a manoeuvre with constant load factor. Thus, to the undisturbed motion
there correspond constant values of the angles of attack o, and of side-slip f,, and angular
velocities of pitch @z yaw'®y,, and rotation®y- Their deviations from the perturbed values will be
called @, B, ®;, ®,, ®, respectively. The deviations of the angular velocities of side-slip, yaw, and
rotation must not exceed given limits.

We consider the equations of the perturbed motion in the form /6/

. 8
o’ = po, — /36,0 — pfo, — 1/;e,°5, @1
. @ 8
o, =m,%a + m; ‘0, — pAwyw, + m,*§,
. 6
f=poy, + oePB 4 powny + 1/pe."8,
o, =m/fp + m;) Yo, + nBow, + mz"ﬁr
Wy =mPp -+ m:":"m== — uCoyo, + m:"Ga
J —J J, —17 J =17
—_ V¥ x —_ 2 x 7’z

z

where p is the aircraft relative density, ¢t are the coefficients of the aerodynamic forces,
m,* are the coefficients of the aerodynamic moments, §,, §;, 8, are the deviations of the
elevator, aileron, and rudder, and J,, J,, J, are the aircraft moments of inertia with respect
to the connected coordinate system.

We take the law of stabilization in the form

S, =kl + ko, O,=kBp +kVo, O8,=kSp + k0, 3.2)
We substitute the values (3.2) into Egs.(3.l1). We use the notation
Ty =0, Tym=0y, =0, T=0, I;=f (3.3)
[ L}
a,, =mb + kbfm.’, a,,= Mo + kMm%, @ype = — puC

[ o )
»
@y =mp - kPmy, ayp=m" +k'm/, ay,=pB
o ko LA o, k.2 6rz
Qgg==m,* + kom;t, azp=m;* +km.°, ay,=—pd
[} L]
. (G _ 2,8 o
ay =13 (% + k7)), au=p—1kle, ay;=—np
L) 8,
™
az =/oleP + Eber”), agg=p + kYo, ay,=p

Using this notation, we can write system (3.1) as

x" = a7 + 43575 + @y93%,1 (3.4)
Ty = Gy T Gy5T5 + Qa7
Ty = agaly + a5u7, b GyeT7,
Ty = @yt b g7, 04577y
z; = @5y + Gs5325 + As531471 %4

We shall find the conditions connecting the coefficients of system (3.4) under which the
solution of the system x = (0 .is asymptotically stable with respect to z;, 5, and stable with
respect to zy, T, Zj.

We use the corollary to Theorem 2. In our example, N = 2, i.e., there are two groups
of variables {z,, Z;, #3}, {,, z5}. In accordance with the notation (1.3), for system (3.4) we
have

X == x(1,2) = (.Z‘l(l), ‘22(1)7 13(‘), 2‘4(2)’ 15(2))
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We consider the Lyapunov function

V =1y (—y305097,% + 2812585157 — Aya3larsds® + 2 + 25%) (3.5)
which is positive definite and admits of an infinitesimal upper limit and an infinitely large

lower limit with respect to the variable x:%,
In view of system (3.4) the derivative of the function (3.5) is

— 2 2
AV/dt = — 530510008, — 913031901 501T5 T 201250512859%5% + (3.6)
2
(201538510805 + @s55) ZTpT5 — Qy330013035%5° + (@45 —
O1038013830)T5%4 T Qgu® + 5525

By the corollary to Theorem 2, to solve our problem we have to find the conditions where-
by function (3.6) is non-positive with respect to 2z, 2, r; and negative definite with respect
to x4 Zs5.

The method of finding these conditions is given in /7/ and is as follows. We equate the
derivative dV/dt of (3.6) to the function

W (2) = —(cnts + €15%5)® — (Coaa + €3525)° — 3.7

{CaaZs T Cass)? — (€4Z4)* — (c525)

and, comparing coefficients of like terms of (3.6) and (3.7), we find the conditions for the
existence of the coefficients of function (3.7) which are in fact the required conditions for
the function (3.6) to be non-positive with respect to z;, 7;, 3 and negative definite with
respect to 1, z;. These conditions are

(243 — a1238213034)*
a1 <{0, a5 <0, ayp<0, a4+ T — <0 (3.8)
ay; + ai’aanans (201330810005 1 452)° <0
> ay 2a1238512092

On substituting the values of the coefficients (3.3) into inequality (3.8), we obtain
the sufficient conditions which solve the aircraft space manoceuvre problem.
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